5/w^2+10/w+2

Simple and best practice solution for 5/w^2+10/w+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/w^2+10/w+2 equation:


D( w )

w^2 = 0

w = 0

w^2 = 0

w^2 = 0

1*w^2 = 0 // : 1

w^2 = 0

w = 0

w = 0

w = 0

w in (-oo:0) U (0:+oo)

10/w+5/(w^2)+2 = 0

10*w^-1+5*w^-2+2 = 0

t_1 = w^-1

5*t_1^2+10*t_1^1+2 = 0

5*t_1^2+10*t_1+2 = 0

DELTA = 10^2-(2*4*5)

DELTA = 60

DELTA > 0

t_1 = (60^(1/2)-10)/(2*5) or t_1 = (-60^(1/2)-10)/(2*5)

t_1 = (2*15^(1/2)-10)/10 or t_1 = (-2*15^(1/2)-10)/10

t_1 = (-2*15^(1/2)-10)/10

w^-1-((-2*15^(1/2)-10)/10) = 0

1*w^-1 = (-2*15^(1/2)-10)/10 // : 1

w^-1 = (-2*15^(1/2)-10)/10

-1 < 0

1/(w^1) = (-2*15^(1/2)-10)/10 // * w^1

1 = ((-2*15^(1/2)-10)/10)*w^1 // : (-2*15^(1/2)-10)/10

10*(-2*15^(1/2)-10)^-1 = w^1

w = 10*(-2*15^(1/2)-10)^-1

t_1 = (2*15^(1/2)-10)/10

w^-1-((2*15^(1/2)-10)/10) = 0

1*w^-1 = (2*15^(1/2)-10)/10 // : 1

w^-1 = (2*15^(1/2)-10)/10

-1 < 0

1/(w^1) = (2*15^(1/2)-10)/10 // * w^1

1 = ((2*15^(1/2)-10)/10)*w^1 // : (2*15^(1/2)-10)/10

10*(2*15^(1/2)-10)^-1 = w^1

w = 10*(2*15^(1/2)-10)^-1

w in { 10*(-2*15^(1/2)-10)^-1, 10*(2*15^(1/2)-10)^-1 }

See similar equations:

| 2/7w=4 | | 3y-5=7y+11 | | x^3+x^2-x-1= | | 2x^2+14x-9=0 | | x+5+3x-7+9x+3-4x=y | | 5.08x+45.72=91.44 | | 104.64=-16x^2+40x+80 | | 3+x=7x-3 | | Ln(t)=7.61 | | (2x-10)/(x-5) | | 24+12=2(12x+6) | | 2x-3+3x=5x+8 | | -x/3=5/6 | | 3+7(x+1)=6-(5x+2x) | | 1/2+4=2 | | 9x+6=16x-3 | | (80k^7q^8)^1/2 | | 6n-5n=10 | | w=3n-wn | | 5.6(x-1)=-0.4x+30.4 | | (2x-2)/(4x^2+1)-1/(4x^2+1) | | 2x+4y=560 | | 5x+2y=560 | | 6/7=x/11 | | 7(9x-4)-5(8-5x)+8(-2x+10)=(9-7x) | | 44x=-48 | | x/2x-5=(x+3)/2x-1 | | y=5(3/5)+9 | | 3(-4X+4)=24 | | y=5(3.18)+9 | | x/2x-5=x+3/2x-1 | | -5/2-1/4w=-8/3 |

Equations solver categories